On the reactions of (vinylimino)phosphoranes and related compounds. Part 30. ${ }^{1}$ Short new synthesis of 5 -azaazulene derivatives. Some comments on reactivities of (vinylimino)phosphoranes ${ }^{2}$

Makoto Nitta,* Yukio Iino, Satoshi Mori and Tohru Takayasu
Department of Chemistry, School of Science and Engineering, Waseda University, Shinjuku-ku, Tokyo 169, Japan

Abstract

A short new synthesis of phenyl-substituted and annulated 5-azaazulene (cyclopenta[c]azepine) derivatives 15-18 consists of the reaction of [(1-phenylvinyl)imino]- and benz-annulated [(cycloalkenyl)imino]phosphoranes 8-11 with 5-(dimethylaminomethylene)cyclopenta-1,3-dienecarbaldehyde 1 in an enamine alkylation (Michael addition) process, subsequent proton migration-ketonization, and condensation of the formyl group with the iminophosphorane moiety (aza-Wittig reaction). On the other hand, reactions of aldehyde 1 with (vinylimino) phosphoranes 12-14, which have no phenyl group at the α-position relative to the nitrogen atom, consist of a intramolecular aza-Wittig reaction or a substitution reaction of aldehyde 1 with phosphoranes 12-14 and subsequent hydrolysis to afford 5-(aminomethylene)cyclopenta-1,3dienecarbaldehyde 19 and its derivatives 20 and 21, respectively. In the context of selectivity observed in the reaction of phosphoranes 8-11 and 12-14 with aldehyde 1, respectively, MNDO calculations on compounds 1 and 12A, 12B as well as on model compounds $\mathbf{8 C}-12 C$ were performed to gain insight via a theoretical interpretation based upon frontier molecular orbital theory (FMO): the former reaction, giving 5-azaazulene derivatives, would be an FMO-controlled reaction, while the latter is a charge-controlled reaction. Several spectral and chemical properties of heterocycles of 16-18 are analysed.

The chemistry of azaazulenes is still of interest to organic chemists, particularly in comparison with that of azulene, and has played a major role in the advancement of our understanding of cyclic conjugation. ${ }^{3}$ Development of methodology for effective construction of azaazulenes has attracted considerable attention for a few decades. ${ }^{4}$ All the monoazaazulenes are known in the form of their derivatives, and the parent $1-,{ }^{5}$ $4-,{ }^{6} 5-{ }^{7}$ and 6-azaazulenes ${ }^{8}$ have also been prepared. Among monoazaazulene derivatives, examples of 5-azaazulenes are few and only a condensed system, azuleno $[1,8-c, d]$ azepine, ${ }^{9}$ has been prepared in addition to $4-, 6-,{ }^{10} 7,8-^{11}$ and $2,4,6,7,8-$ substituted derivatives. Recently, the preparation of nitrogen heterocycles by means of the aza-Wittig reaction has been widely utilized because of the ready availability of functionalized iminophosphoranes. ${ }^{12}$ Previously, we have also demonstrated a simple preparation of (vinylimino)phosphoranes, ${ }^{13}$ which were found to react with the compounds bearing two electrophilic centres, α-bromo ketones, ${ }^{14} \alpha, \beta$-unsatursted ketones, ${ }^{15}$ tropone derivatives ${ }^{16}$ and methano[11]annulenones ${ }^{17}$ in an enamine alkylation process (Michael addition) followed by aza-Wittig reaction to provide a convenient route to pyrroles, pyridines, 1-azaazulenes and methanocycloundeca[b]pyrroles. Regarding 5-(dimethylaminomethylene)cyclopenta-1,3-diene carbaldehyde 1, it reacts with nucleophilic and electrophilic reagents indicating a participation of the polar structure 1B. ${ }^{18}$ Thus, compound 1 is considered to have two electrophilic centres, the C-6 carbon and the carbonyl carbon atoms (Scheme 1). ${ }^{18}$ Now we planned to take advantage of the methodology using (vinylimino)phosphoranes 8-14 and aldehyde 1 for construction of 5 -azaazulene (cyclopenta[c]azepine) derivatives. The organic azides 2-7 with tertiary phosphines gave the corresponding iminophosphoranes 8-13 after evolution of nitrogen. ${ }^{13}$ The iminophosphorane 14 was obtained by successive 1,5-hydrogen migration of [(cyclohepta-2,4,6trienyl)imino]phosphorane. ${ }^{13}$ The reaction of phosphoranes 8-11 with aldehyde 1 afforded 5-azaazulene derivatives 15 18, while that of triphenyl(vinylimino)phosphorane 12A,
[(azulen-2-yl)imino]tributylphosphorane 13B and [(cyclo-hepta-1,3,5-trienyl)imino]tributylphosphorane 14B, gave only 5-(aminomethylene)cyclopenta-1,3-dienecarbaldehyde 19, 5-[(azulen-2-yl)aminomethylene]cyclopenta-1,3-dienecarbaldehyde 20 and 5-(cyclohepta-1,3,5-trienylaminomethylene)-cyclopenta-1,3-dienecarbaldehyde 21, respectively (Scheme 1). In order to gain insight into the selectivity, minimal neglect of differential overlap (MNDO) calculations on structures 1, 12A, 12B and model compounds $8 \mathrm{C}-14 \mathrm{C}$ were also performed. We describe here the results in detail.

Results and discussion

Annulation of 5-azaazulene ring system

Reaction of triphenyl[(1-phenylvinyl)imino]phosphorane 8A ${ }^{16}$ with aldehyde 1 in anhydrous bromobenzene was carried out to give 6-phenyl-5-azaazulene 15 (Scheme 2). The reaction was also carried out in a one-flask operation: after a solution of 2-phenylvinyl azide 2 and triphenylphosphane in anhydrous bromobenzene had been stirred for 1 h at $80^{\circ} \mathrm{C}$, to this reaction mixture was added aldehyde 1 , and the mixture was refluxed to give product 15 . The structure of compound 15 was unequivocally assigned on the basis of a comparison of its physical data with those reported in the literatures. ${ }^{7,10 a}$ Further examples of the construction of annulated 5-azaazulenes are shown in Scheme 2. Several (vinylimino)phosphoranes are prepared easily by the Staudinger reaction ${ }^{19}$ of the corresponding organic azides with a tertiary phosphane in an anhydrous solvent. ${ }^{20-22}$ Since tributyl(vinylimino)phosphoranes seemed more reactive than the triphenyl analogues and generally to be less stable, ${ }^{21}$ in situ preparation of phosphoranes 9-11 and subsequent reaction with aldehyde 1 in a one-flask operation was carried out. Reaction of tributyl-[(inden-3-yl)imino]phosphorane $9 \mathbf{B}^{22}$ with aldehyde 1 afforded the cyclopenta $[e]$ indeno[1,2- $b]$ azepine 16. Similarly, tributyl $\{(6,7$-dihydro- 5 H -benzo[7] annulen-9-yl)imino $\}$ phosphorane 10B (see Experimental section) reacted with aldehyde 1 to

9

10

14

11

15-18

15

17

18

19

20, 21

9B
16

24
Scheme 2 Reagents and conditions: i, 1, heat
undergoes intramolecular aza-Wittig reaction to give heterocycle 24, which eliminates HNMe_{2} to give compound 15.

The spectral data of new compounds 16-18 are appropriate for their structures: the ${ }^{1} \mathrm{H}$ NMR spectra were assigned completely with the aid of pseudocontact spectra obtained by using tris($6,6,7,7,8,8,8$-heptafluoro-2,2-dimethyloctane-3,5dionato)europium $\left[\mathrm{Eu}(\mathrm{fod})_{3}\right]$ and are consistent with the proposed structures. Their electronic spectra in EtOH are similar to that of compound 15. ${ }^{7}$ In particular, compound 18, involving an acenaphthylene moiety, exhibits an additional longer-wavelength absorption maximum at 738 nm , suggesting the presence of extended conjugation. Furthermore, the absorption maxima in the visible region of compounds 16-18 in EtOH-trifluoroacetic acid (TFA) show hypsochromic shifts, and the features are similar to those of compound 15^{7} (Table 2). These findings indicate that compounds 16-18 exist as 5azaazulenium ions 25-27 in acidic media (Scheme 3), protonated at the nitrogen atom, being consistent with the theoretical prediction. ${ }^{8.24}$ The protonation process is reversible and the compounds were recovered by neutralization with aq. NaHCO_{3}.

Interesting chemical properties of compound 16 were also

Table 1 Reaction of phosphoranes 8-11 with aldehyde 1

Compound	Solvent	Reaction conditions	Reaction time (t / h)	Product, yield $(\%)^{a}$
$\mathbf{8 A}^{b}$	PhBr	reflux	4	$\mathbf{1 5 (2 4)}$
8A	PhBr	reflux	4	$\mathbf{1 5}(25)$
9B	PhMe	reflux	3	$\mathbf{1 6 (3 2)}$
10B	PhBr	reflux	10	$\mathbf{1 7 (2 1)}$
11B	PhMe	reflux	20	$\mathbf{1 8}(34)$

${ }^{a}$ Yields are based on fulvene 1 used. ${ }^{b}$ Isolated phosphorane $\mathbf{8}$ was used for the reaction.

Scheme 3 Reagents and conditions: i, EtOH-TFA; ii, aq. NaHCO_{3}; iii, Bu'OK-MeOD, THF
clarified. On treatment of compound 16 with $\mathrm{Bu}^{t} \mathrm{OK}$ in MeOD at $-45^{\circ} \mathrm{C}$, the methylene hydrogens at $\mathrm{C}-10$ were exchanged almost completely with deuterium to give compound 29 in 90% yield (Scheme 3). The clean deuterium exchange, however, did not proceed at above $-40^{\circ} \mathrm{C}$, and significant decomposition was then observed. Therefore the formation of an anion 28, which is a benzo-annulated aza-analogue of a 14π-electron system, cyclopenta[f]azulenide, ${ }^{25}$ was suggested. Regarding the canonical structures 28A and 28B, the former involves benzene and 5 -azaazulene in addition to cyclopentadienide ion, while the latter has 5 -azaazulene annulated with quinonoid benzene and cyclopentadienide ion. Since deuterium is not incorporated onto $\mathrm{C}-1$ and/or $\mathrm{C}-3$, the former canonical structure $\mathbf{2 8 A}$ is suggested to be the more stable thermodynamically.

Intermolecular aza-Wittig reaction or a substitution reaction of

 aldehyde 1 with phosphoranes 12-14Reaction of unsubstituted (vinylimino)phosphorane 12A ${ }^{26}$ afforded 5-(aminomethylene)cyclopenta-1,3-dienecarbaldehyde $19{ }^{27}$ albeit in low yield. Furthermore, we found that [(azulen-2yl)imino]tributylphosphorane $\mathbf{1 3 B}^{28}$ reacted with aldehyde 1 to yield only 5 -[(azulen-2-yl)aminomethylene]cyclopenta-1,3dienecarbaldehyde 20. Similarly, tributyl[(cyclohepta-1,3,5trienyl)imino]phosphorane $14 \mathrm{~B}^{21}$ reacted with aldehyde 1 to give 5-[(cyclohepta-1,3,5-trienyl)aminomethylene]cyclopenta-

Table 2 Electronic spectral data of 5-azaazulene derivatives

Compound	Solvent	$\lambda_{\max } / \mathrm{nm}\left(\log \varepsilon / \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1}\right)$
$\mathbf{1 6}$	EtOH	$301(4.71), 332(4.46), 394(4.16), 558(3.14), 581(3.08), 608(3.02), 670(2.03)$
	17	EtOH-TFA
		$302(4.70), 356(4.31), 402(4.06), 537(3.60), 588(3.58), 582(3.51), 638(3.09)$
$\mathbf{1 8}$	EtOH-TFA	$285(4.60), 376(3.62), 564(2.91), 610(2.87)$
	EtOH	$284(4.60), 337(4.31), 376(3.91), 541(3.24), 588(3.16), 645(2.87)$
	EtOH-TFA	$320(4.95), 353(4.93), 372(4.67), 452(3.32), 610(2.56), 667(2.45), 738(1.91)$

1,3-dienecarbaldehyde 21 (Scheme 4). The results and reaction conditions are summarized in Table 3. The structure of product 19 was unequivocally determined on the basis of a comparison of its spectral data with those reported in the literature. ${ }^{27}$ The structures of products 20 and 21 were also determined on the basis of ${ }^{1} \mathrm{H}$ NMR, IR and high-resolution mass spectral data. Typical characteristics of products 20 and 21 are the signals of protons on the methylene carbon of the fulvene moiety. The protons appear at $\delta 8.17$ for compound 20 and $\delta 7.72$ for compound 21, each of which is coupled with the $-\mathrm{NH}-$ proton

Scheme 4 Reagents and conditions: i, 1, heat; ii, adventitious water or SiO_{2}
by $J 10.1$ and $J 13.0 \mathrm{~Hz}$, respectively. Thus the structural assignment was confirmed.

The proposed mechanistic pathways for the formation of products 19-21 are also outlined in Scheme 4. The condensation (aza-Wittig reaction, ${ }^{19}$ Path A) of the formyl group of aldehyde 1 with the iminophosphorane moiety of reagents 12-14 gives enimine 30. This process is very useful in the chemistry of simple iminophosphoranes. ${ }^{12}$ Compound 30 is then hydrolysed in the presence of adventitious water or under work-up conditions to give a compound of type 33 (20 and 21). The alternative pathway (Path B) is the nucleophilic attack of the nitrogen moiety of phosphoranes 12-14 onto the methylene of aldehyde 1 to give zwitterion 31, which undergoes elimination of the dimethylamino group to give phosphonium ion 32. Hydrolysis of the $\mathrm{P}-\mathrm{N}$ bond of ion 32 gives enamine 33 (20 and 21). Unlike the cases of compounds 20 and 21 , the enamine moiety of compounds 33 would be unstable because of the absence of conjugative stabilization, and it would further undergo hydrolysis to give enamine 19.

Explanation of the selectivity in the reaction of phosphoranes 8 -14 with aldehyde 1 by FMO theory

One of the most useful aspects of the principle of hard and soft acids and bases is the way in which it classifies our ideas on ambient reactivity (Schemes 2 and 4). ${ }^{29}$ The site where most of the charge exists (the hard centre) will be the site of attack by charged, or relatively charged, electrophiles (hard electrophiles) and the site of the largest coefficient in the highest occupied molecular orbital (HOMO) of the nucleophile (soft centre) will be the site of attack by electrophiles with a relatively low-energy lowest unoccupied molecular orbital (LUMO) (soft electrophile). Thus the selectivity in the reaction of (vinylimino)phosphoranes 8-14 with aldehyde 1 are now explicable in terms of Frontier Molecular Orbital theory (FMO). ${ }^{30}$ Table 4 presents LUMO energy and coefficients as well as charge densities of aldehyde 1 as obtained by the MNDO method. ${ }^{31}$ The (vinylimino)phosphoranes $8-14$ are large molecules, except for compounds $\mathbf{1 2}$. In the case of $\mathbf{1 2 A}$, it consists of fewer than 50 atoms and a MOPAC program is available for the calculations. The calculation on compound 12B as well as on model compound 12C (Scheme 5) was also performed, and HOMO energies and coefficients, as well as charge densities of (vinylimino)phosphoranes, are listed in Tables 5 and 6. In the

1

12A

8C-14C

12B
Scheme 5
rest of the (vinylimino)phosphoranes, calculation on the model compounds $8 \mathrm{C}-11 \mathrm{C}, 13 \mathrm{C}$ and 14 C , all of which involve PH_{3} in place of the corresponding PBu_{3} or PPh_{3} of displayed structures 8-11, 13 and 14, respectively, was performed (Tables 5 and 6). Regarding the calculated values of 12A, 12B and 12C, similar relative magnitudes of the coefficients and charge densities are obtained for $\mathrm{C}^{\beta}, \mathrm{C}^{\alpha}$ and C^{N}; however, energies of HOMOs are higher for 12A and 12B, as compared with that of the model compound $\mathbf{1 2 C}$. The relative ratios of HOMO coefficients of C^{β} and $C^{N}\left(C^{\beta} / C^{N}\right)$ are similar for each for compounds 12A, 12B and 12C. Thus we assume that HOMO energies of phosphoranes $\mathbf{8 - 1 1}, \mathbf{1 3}$ and 14 must be higher than those of the model compounds $8 \mathrm{C}-11 \mathrm{C}, 13 \mathrm{C}$ and 14 C , but coefficients and charge densities must be similar for compounds 8-11, 13 and 14 to those of the corresponding model compounds. The values of C^{β} / C^{N} (Table 5) are relatively large for compounds $\mathbf{8 C}-11 \mathrm{C}$ as compared with those of compounds 12A, 12B and 12C, indicating that enamine-type alkylation is favourable for species $\mathbf{8 C - 1 1 C}$, and thus for all 8-11. Since the values of C^{β} / C^{N} for compounds 12C (as well as 12A and 12B) are small as compared with those of phosphoranes $\mathbf{8 C}-11 \mathrm{C}$, enamine-type alkylation is unfavourable in this case and azaWittig reaction of the iminophosphorane moiety (hard centre, high charge density) (Table 6) with the carbonyl carbon atom (hard centre, high positive charge density) (Table 4) must be favoured (Path A in Scheme 4). An alternative pathway is substitution reaction of the iminophosphorane moiety onto the relatively positive centre methylene of aldehyde 1 (Path \mathbf{B} in Scheme 4). On the other hand, HOMO levels of compounds 13C and 14C are slightly high and C^{β} / C^{N}-values are also large for compounds 13C and 14C, as compared with those values for phosphoranes 8C-11C. However, the charge densities on the nitrogen atom of compounds 13 C and 14 C is extremely high. This fact is suggestive that the aza-Wittig reaction (Path A in Scheme 4) or the substitution reaction (Path B in Scheme 4) predominates for phosphoranes 13 C and 14 C , thus for other phosphoranes 13 and 14, as in the case of the vinylphosphoranes 12. Regarding Path A and Path B (Scheme 4), we have no evidence as to which pathway is favoured at this stage; however, the selectivity of the reaction of (vinylimino) phosphoranes 8-14 is suggestive. In addition, the iminophosphoranes $8-14$ have

Table 3 Reaction of phosphoranes 12-14 with aldehyde 1

Compound	Solvent	Reaction conditions	Reaction time (t / h)	Product, yield $(\%)^{a}$
$\mathbf{1 2 A}^{b}$	PhH	reflux	2	$\mathbf{1 9 (2 4)}$
$\mathbf{1 3 B}^{14 B^{b}}$	PhMe	reflux	3	$\mathbf{2 0}(34)$

${ }^{a}$ Yields are based on fulvene 1 used. ${ }^{b}$ Isolated (vinylimino) phosphorane was used for the reaction.
been demonstrated to undergo enamine-type alkylation with tropone or 2-chlorotropone to result in the formation of a 1azaazulene ring system. $\dagger^{, 13}$ We therefore suggest that the selectivity of the (vinylimino)phosphorane is also dependent on the nature of the Michael acceptor.

In conclusion, the utility of phenyl-substituted and benzannulated (vinylimino)phosphoranes 8-11 and 5-(dimethyl-aminomethylene)cyclopenta-1,3-dienecarbaldehyde 1 for the preparation of phenyl-substituted and annulated 5-azaazulene (cyclopenta[c]azepine) ring systems was demonstrated. The (vinylimino)phosphoranes $8-11$ are suggested to react in an FMO-controlled manner, while phosphoranes 12-14 do so in a charge-controlled fashion on the basis of MNDO calculations on model compounds. Further application of the synthetic methodology using (vinylimino)phosphoranes and related compounds is now in progress in our laboratory.

Experimental

IR spectra were recorded on a Shimadzu IR - 400 spectrometer. Electronic spectra were measured on a Shimadzu UV-3101PC spectrometer. Mass spectra and high-resolution mass spectra were run on a Shimadzu GCMS QP-1000 and a JEOL DX-300 spectrometer. Unless otherwise specified, ${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz})$ and ${ }^{13} \mathrm{C}$ NMR (100.6 MHz) spectra were recorded in CDCl_{3} solutions on a JNM-GSX400 and spectrometer and the chemical shifts are given relative to internal SiMe_{4} standard. J-Values are given in Hz . Microanalyses were performed at the Materials Characterization Central Laboratory of Waseda University. Mps were recorded on a Yamato mp-21 apparatus and are uncorrected. Triphenyl-[(1-phenylvinyl)imino]phosphorane 8A, ${ }^{15}$ triphenyl(vinylimino) phosphorane 12A ${ }^{26}$ and tributyl[(cyclohepta-1,3,5-trienyl)imino]phosphorane $14 \mathbf{B}^{21}$ were prepared and characterized previously. Preparation of tributyl[(inden-3-yl)imino]phosphorane 9B, ${ }^{22}$ [(acenaphthyl-en-1-yl)imino]tributylphosphorane $11 \mathbf{B},{ }^{23}$ [(azulen-2-yl)imino]tributylphosphorane $\mathbf{1 3 B}^{26}$ are carried out in situ as described previously. The preparation and characterization of [(6,7-dihydro-5H-benzo[7]annulen-9-yl)imino]triphenylphosphorane 10 A is described in this paper, and the corresponding tributylphosphorane 10B ${ }^{32}$ was prepared in situ and used subsequently for the preparative reaction.

Preparation and characterization of 9 -azido-6,7-dihydro-5Hbenzo[7] annulene 4 and the corresponding iminophosphorane A solution of $\mathrm{NaN}_{3}(230 \mathrm{mg}, 3.5 \mathrm{mmol})$ and ICl $(179 \mathrm{mg}$, 1.1 mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(5 \mathrm{~cm}^{3}\right)$ was stirred at $0{ }^{\circ} \mathrm{C}$ for 30 min . To this solution was added 6,7 -dihydro- 5 H -benzo[7]annulene

[^0]Table 4 FMO energies and coefficients and charge densities of the fulvene 1^{a}

LUMO/eV	Coefficient								
	C-1	C-2	C-3	C-4	C-5	C-6	C^{N}	C-7	C°
-0.853	-0.295	-0.013	-0.005	0.322	-0.388	0.562	-0.025	-0.058	0.038
Charge density									
	C-1	C-2	C-3	C-4	C-5	C-6	C^{N}	C-7	C°
	-0.072	-0.166	-0.003	-0.087	-0.064	0.136	-0.395	0.329	-0.305

[^1]Table 5 FMO energies and coefficients of (vinylimino) phosphoranes 8C-11C and 12A-C

Compound	HOMO/eV	Coefficient				
		C^{β}	C^{α}	$\mathrm{C}^{\text {N }}$	$\mathrm{C}^{\text {P }}$	C^{β} / C^{N}
8C	-7.821	0.683	0.330	-0.501	-0.074	1.36
9C	-7.584	0.694	0.327	-0.491	-0.070	1.41
10C	-7.714	0.683	0.324	-0.530	-0.069	1.29
11 C	-7.645	0.523	0.389	-0.322	-0.018	1.62
12C	-7.612	0.656	0.368	-0.610	-0.077	1.09
12A	-7.076	0.671	0.342	-0.618	-0.065	1.09
12B	-6.922	0.670	0.328	-0.624	-0.042	1.07
13C	-7.389	0.487	0.392	-0.367	-0.085	1.33
14C	-7.228	0.492	0.358	-0.281	-0.067	1.75

Table 6 Charge densities of phosphoranes 8C-14C, 12A and 12B

Compound	C^{β}	C^{α}	C^{N}	$\mathrm{C}^{\boldsymbol{P}}$
$\mathbf{8 C}$	-0.242	0.084	-0.472	0.583
$\mathbf{9 C}$	-0.305	0.108	-0.460	0.583
$\mathbf{1 0 C}$	-0.287	0.113	-0.467	0.575
$\mathbf{1 1 C}$	-0.073	0.057	-0.472	0.600
$\mathbf{1 2 C}$	-0.163	0.013	-0.467	0.583
$\mathbf{1 2 A}$	-0.203	0.042	-0.524	0.752
$\mathbf{1 2 B}$	-0.210	0.046	-0.519	0.399
$\mathbf{1 3 C}$	-0.346	0.321	-1.342	3.114
$\mathbf{1 4 C}$	-0.317	0.303	-1.368	3.110

$(144 \mathrm{mg}, 1 \mathrm{mmol})$, and the mixture was stirred for 2.5 h at room temp. The reaction was quenched with $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$, the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and the extract was dried over MgSO_{4}. Removal of solvent under reduced pressure gave 9 -azido-8-iodo-6,7,8,9-tetrahydro- 5 H -benzo[7]annulene ($302 \mathrm{mg}, 97 \%$).
After a solution of this compound ($313 \mathrm{mg}, 1 \mathrm{mmol}$) and $\mathrm{Bu}^{2} \mathrm{OK}$ ($210 \mathrm{mg}, 2 \mathrm{mmol}$) had been stirred at room temp. for 2.5 h , aq. $\mathrm{NH}_{4} \mathrm{Cl}$ was added to the reaction mixture. The mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and the extract was dried over MgSO_{4}. The solvent was removed under reduced pressure, and the resulting residue was purified through column chromatography on alumina to give 9 -azido-6,7-dihydro-5 H benzo[7]annulene 4 ($144 \mathrm{mg}, 78 \%$) as an oil; $\delta_{\mathbf{H}}\left(\mathrm{CDCl}_{3} ; 60\right.$ $\mathrm{MHz}) 1.67-2.39\left(4 \mathrm{H}, \mathrm{m}, 6-\right.$ and $\left.7-\mathrm{H}_{2}\right), 2.39-3.04\left(2 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}_{2}\right)$, 5.62-6.09 ($1 \mathrm{H}, \mathrm{m}, 8-\mathrm{H}$) and 6.95-7.53 ($4 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$).

To a stirred solution of compound $4(185 \mathrm{mg}, 1 \mathrm{mmol})$ in anhydrous benzene ($2 \mathrm{~cm}^{3}$) was added a solution of PPh_{3} (236 $\mathrm{mg}, 0.9 \mathrm{mmol}$) in benzene ($1 \mathrm{~cm}^{3}$) dropwise at room temp., and the mixture was stirred at room temp. for 1.5 h . To this reaction mixture was added hexane ($8 \mathrm{~cm}^{3}$), and the precipitate was collected by filtration to give [(6,7-dihydro-5H-benzo[7]an-nulen-9-yl) imino] triphenylphosphorane 10A ($331 \mathrm{mg}, 82 \%$) as yellow prisms, mp $115-116^{\circ} \mathrm{C}$ (from hexane-benzene); $\delta_{\mathrm{H}^{-}}$ $\left(\mathrm{CDCl}_{3} ; 60 \mathrm{MHz}\right) 1.38-2.20\left(4 \mathrm{H}, \mathrm{m}, 5-\mathrm{and} 7-\mathrm{H}_{2}\right), 2.20-2.68$ ($2 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}_{2}$), 4.80-5.17 ($1 \mathrm{H}, \mathrm{m}, 8-\mathrm{H}$) and 6.83-8.04 ($19 \mathrm{H}, \mathrm{m}$, $1-, 2-, 3-$ and $4-\mathrm{H}$ and Ph_{3}); m / z (rel. intensity) 419 ($\mathrm{M}^{+}, 64 \%$) and 183 (100) (Found: C, 83.0; H, 6.1; N, 3.2. $\mathrm{C}_{29} \mathrm{H}_{26} \mathrm{NP}$ requires $\mathrm{C}, 83.03 ; \mathrm{H}, 6.25 ; \mathrm{N}, 3.34 \%$).

Reaction of phosphorane 8A with 5-(dimethylaminomethylene)-cyclopenta-1,3-dienecarbaldehyde 1

A solution of phosphorane $\mathbf{8 A}(379 \mathrm{mg}, 1 \mathrm{mmol})$ and aldehyde 1 ($134 \mathrm{mg}, 0.9 \mathrm{mmol}$) in anhydrous bromobenzene ($2 \mathrm{~cm}^{3}$) was heated under reflux for 4 h . After removal of the solvent under reduced pressure, the residue was chromatographed on silica gel with benzene as eluent. The fractions eluted with benzene were further purified by TLC on silica gel $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ to give 3-
phenylcyclohepta[c]azepine 15 as violet plates, mp 156$158^{\circ} \mathrm{C}$ (from hexane) (lit., ${ }^{7} \mathrm{mp} \mathrm{158-159}{ }^{\circ} \mathrm{C}$).
In one-flask operation. After a solution of 1-phenylvinyl azide $(174 \mathrm{mg}, 1.2 \mathrm{mmol})$ and $\mathrm{PPh}_{3}(315 \mathrm{mg}, 1.2 \mathrm{mmol})$ in bromobenzene ($2 \mathrm{~cm}^{3}$) had been stirred at $80^{\circ} \mathrm{C}$ for 1 h , compound $1(149 \mathrm{mg}, 1 \mathrm{mmol})$ was added to the reaction mixture, and the mixture was refluxed for another 4 h . Work-up similar to that described above gave compound 15. The results and reaction conditions are summarized in Table 1.

General procedure for the reaction of phosphoranes 9-11 with aldehyde 1

A solution of the corresponding organic azide $3-5$ (1 mmol) and tributylphosphane ($202 \mathrm{mg}, 1 \mathrm{mmol}$) in anhydrous solvent ($2 \mathrm{~cm}^{3}$) was stirred at room temperature for 40 min . To this mixture was added a solution of aldehyde $1(134 \mathrm{mg}, 0.9 \mathrm{mmol})$ in the same solvent $\left(1 \mathrm{~cm}^{3}\right)$, and the mixture was heated under reflux for the period indicated in Table 1. The reaction mixture was then filtered through Celite, and the resulting residue was purified by TLC on silica gel $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ to give 5 -azaazulene derivatives 16-18. The results and reaction conditions are summarized in Table 1.

11H-Cyclopenta[e]indeno [1,2-b]azepine 16. Violet needles, $\mathrm{mp} 190^{\circ} \mathrm{C}$ (from EtOH); $\delta_{\mathrm{H}} 4.16\left(2 \mathrm{H}, \mathrm{s}, 10-\mathrm{H}_{2}\right), 7.45(1 \mathrm{H}, \mathrm{d}$, $J 3.7,1-\mathrm{H}), 7.49-7.52(2 \mathrm{H}, \mathrm{m}, 7-\mathrm{and} 8-\mathrm{H}), 7.56-7.59(1 \mathrm{H}, \mathrm{m}$, $9-\mathrm{H}), 7.62(1 \mathrm{H}, \mathrm{d}, J 3.7,3-\mathrm{H}), 7.82(1 \mathrm{H}, \mathrm{d}, J 3.7,2-\mathrm{H}), 8.26-8.30$ $(1 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}), 8.48(1 \mathrm{H}, \mathrm{s}, 11-\mathrm{H}), 9.41(1 \mathrm{H}, \mathrm{s}, 4-\mathrm{H})$; relative downfield shifts ($\mathrm{ppm} / \mathrm{mol}$) obtained by using $\mathrm{Eu}(\mathrm{fod})_{3}: 1.0$ $(3-\mathrm{H}), 2.5(9-\mathrm{H}), 3.0(2-\mathrm{H}), 8.8(1-\mathrm{H}), 13.5(11-\mathrm{H}), 61.0(5-\mathrm{H})$, $99.9(6-\mathrm{H})$, unresolved ($7-, 8$ - and $10-\mathrm{H}$); $\delta_{\mathrm{C}} 38.8,120.8,123.0$, 123.9, 124.6, 127.6, 130.1, 130.8, 133.2, 136.2, 137.2, 137.7, 144.5, 145.1, 152.7 and $163.7 ; v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1583$ and $1551 ; \mathrm{m} / \mathrm{z}$ (rel. intensity) $217\left(\mathrm{M}^{+}, 100 \%\right.$) (Found: $\mathrm{M}^{+}, 217.0899$. $\mathrm{C}_{16} \mathrm{H}_{11} \mathrm{~N}$ requires $\mathrm{M}, 217.0892$).
6,7-Dihydro-5 H -benzo[7] annuleno[5,6-b] cyclopenta [e]aze-
pine 17. Violet needles, $\mathrm{mp} 116-117^{\circ} \mathrm{C}$ (from EtOH); $\delta_{\mathrm{H}} 2.21-$ $2.40\left(2 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}_{2}\right), 2.58-2.64\left(4 \mathrm{H}, \mathrm{m}, 5\right.$ - and $\left.7-\mathrm{H}_{2}\right), 7.23(1 \mathrm{H}$, d, J1.5, 9-H), 7.36-7.46 (2 H, m, 2- and 3-H), 7.44-7.47 (1 H, m, $4-\mathrm{H}), 7.54(1 \mathrm{H}, \mathrm{d}, J 1.5,11-\mathrm{H}), 7.88-7.93(2 \mathrm{H}, \mathrm{m}, 1-$ and $10-\mathrm{H})$, $8.34(1 \mathrm{H}, \mathrm{s}, 8-\mathrm{H})$ and $9.42(1 \mathrm{H}, \mathrm{s}, 12-\mathrm{H}) ; \delta_{\mathrm{C}} 30.5,33.4,35.7$, $120.5,121.5,126.9,128.0,129.4,129.6,129.9,131.9,137.9,138.2$, 139.1, 142.5, 144.2, 149.7 and 164.6; $v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1584$ and 1548; m / z (rel. intensity) $245\left(\mathrm{M}^{+}, 100 \%\right.$) (Found: M^{+}, 245.1197. $\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{~N}$ requires $\mathrm{M}, 245.1206$).

Acenaphtho[1,2-b]cyclopenta[e]azepine 18. Green prisms, mp $170^{\circ} \mathrm{C}$ (from EtOH); $\delta_{\mathrm{H}} 7.53(1 \mathrm{H}, \mathrm{d}, J 3.7,10-\mathrm{H}), 7.57(1 \mathrm{H}, \mathrm{d}$, $J 3.7,8-\mathrm{H}), 7.64(1 \mathrm{H}, \mathrm{dd}, J 8.1$ and $7.0,2-\mathrm{H}), 7.75(1 \mathrm{H}, \mathrm{dd}, J 8.1$ and $7.0,5-\mathrm{H}), 7.79(1 \mathrm{H}, \mathrm{t}, J 3.7,9-\mathrm{H}), 7.84(1 \mathrm{H}, \mathrm{d}, J 8.4,4-\mathrm{H})$, 7.93 ($1 \mathrm{H}, \mathrm{d}, J 7.0,1-\mathrm{H}), 7.99(1 \mathrm{H}, \mathrm{d}, J 8.1,4-\mathrm{H}), 8.39(1 \mathrm{H}, \mathrm{d}, J$ $7.0,1-\mathrm{H}), 8.82(1 \mathrm{H}, \mathrm{s}, 7-\mathrm{H})$ and $9.30(1 \mathrm{H}, \mathrm{s}, 11-\mathrm{H})$; relative downfield shifts ($\mathrm{ppm} / \mathrm{mol}$) obtained by using $\mathrm{Eu}(\mathrm{fod})_{3}: 0.0$ $(9-H), 1.0(2-\mathrm{H}), 2.0(3-\mathrm{H}), 8.6(4-\mathrm{H}), 8.6(8-\mathrm{H}), 9.1(7-\mathrm{H}), 9.6$ $(2-\mathrm{H}), 10.5(1-\mathrm{H}), 10.6(8-\mathrm{H}), 68.5(7-\mathrm{H})$ and $125.9(6-\mathrm{H}) ; \delta_{\mathrm{C}}$
$119.7,122.8,123.6,124.5,126.7,127.4,128.4,128.8,129.2,130.0$, $131.5,133.2,134.2,136.6,136.8,136.9,139.0,150.5$ and 162.8 ; $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1583$ and $1551 ; \mathrm{m} / \mathrm{z}$ (rel. intensity) 253 $\left(\mathrm{M}^{+}, 100 \%\right.$) (Found: $\mathrm{M}^{+}, 253.0883 . \mathrm{C}_{19} \mathrm{H}_{11} \mathrm{~N}$ requires M , 253.0892).

Deuterium-exchange reaction of compound 16

A solution of $\mathrm{Bu}{ }^{t} \mathrm{OK}(11.2 \mathrm{mg}, 0.1 \mathrm{mmol})$ in $\mathrm{MeOD}\left(0.6 \mathrm{~cm}^{3}\right)-$ tetrahydrofuran (THF) $\left(1 \mathrm{~cm}^{3}\right)$ was cooled to $-45^{\circ} \mathrm{C}$. To this solution was added a solution of compound $16(22 \mathrm{mg}, 0.1$ mmol) in THF ($1 \mathrm{~cm}^{3}$), and the mixture was stirred at $-45^{\circ} \mathrm{C}$ for $2 \mathrm{~h} . \mathrm{D}_{2} \mathrm{O}\left(1 \mathrm{~cm}^{3}\right)$ was added and the mixture was stirred for 10 min before being poured into water, extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and the extract was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After evaporation of the solvent, deuterium-incorporated product 29 ($20 \mathrm{mg}, 90 \%$) was obtained.

Reaction of phosphoranes 12 A and 14 B with aldehyde 1

A solution of a phosphorane 12 A or $14 \mathrm{~B}(1 \mathrm{mmol})$ and aldehyde $1(134 \mathrm{mg}, 0.9 \mathrm{mmol})$ in an appropriate solvent $\left(3 \mathrm{~cm}^{3}\right)$ was heated under reflux for a period indicated in Table 3. After evaporation of the solvent, the residue was purified through column chromatography on silica gel. Fractions eluted with hexane-AcOEt ($1: 1$) were concentrated and the residue was further separated by TLC on silica gel $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ to give products 19 and 21, respectively. Compound 19 was identified on the basis of a comparison of its IR and ${ }^{1} \mathrm{H}$ NMR spectral data with those reported in the literature. ${ }^{27}$ The results are summarized in Table 3.
5-(Cyclohepta-1', $\mathbf{3}^{\prime}, 5^{\prime}$-trienylaminomethylene)cyclopenta-
1,3-dienecarbaldehyde 21. Yellow oil; $\delta_{\mathbf{H}}\left(\mathrm{CDCl}_{3} ; 90 \mathrm{MHz}\right) 2.72$ ($2 \mathrm{H}, \mathrm{d}, J 6.8,7^{\prime}-\mathrm{H}_{2}$), $5.37\left(1 \mathrm{H}, \mathrm{dt}, J 9.0\right.$ and $6.8,6^{\prime}-\mathrm{H}$), 6.09$6.50\left(3 \mathrm{H}, \mathrm{m}, 3-, 2^{\prime}-\right.$ and $\left.5^{\prime}-\mathrm{H}\right), 6.50-6.60\left(2 \mathrm{H}, \mathrm{m}, 3^{\prime}-\right.$ and $\left.4^{\prime}-\mathrm{H}\right)$, 6.97-7.04 (1 H, m, 2-H), 7.30-7.40 (1 H, m, 4-H), 7.72 ($1 \mathrm{H}, \mathrm{dd}$, $J 13.0$ and $0.9,=\mathrm{CH}-\mathrm{N}), 9.47(1 \mathrm{H}, \mathrm{s}, \mathrm{CHO}), 12.95-13.50(1 \mathrm{H}$, $\mathrm{br}, \mathrm{NH}) ; v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3011,1656$ and $1607 ; \mathrm{m} / \mathrm{z}$ (rel. intensity) $211\left(\mathbf{M}^{+}, 77 \%\right)$ and 91 (100) (Found: $\mathbf{M}^{+}, 211.0985$. $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{NO}$ requires $\mathrm{M}, 211.0988$).

Reaction of compound 13B with aldehyde 1

A solution of 2-azidoazulene $7(66 \mathrm{mg}, 0.5 \mathrm{mmol})$ and tributylphosphane ($101 \mathrm{mg}, 0.5 \mathrm{mmol}$) in toluene $\left(2 \mathrm{~cm}^{3}\right)$ was stirred at room temp. for 30 min . To this mixture was added a solution of aldehyde $1(67 \mathrm{mg}, 0.45 \mathrm{mmol})$ in toluene $\left(1 \mathrm{~cm}^{3}\right)$, and the mixture was heated under reflux for 3 h . The reaction mixture was then filtered through Celite and the filtrate was purified by TLC on silica gel $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ to give 20. The results are summarized in Table 3.

5-(Azulen-2'-ylaminomethylene)cyclopenta-1,3-dienecarb-
aldehyde 20. Violet oil; $\delta_{\mathbf{H}}\left(\mathrm{CDCl}_{3} ; 90 \mathrm{MHz}\right) 6.51(1 \mathrm{H}$, dd, J 4.2 and $3.3,3-\mathrm{H}), 7.05-7.50\left(5 \mathrm{H}, \mathrm{m}, 2-, 4-, 5^{\prime}-, 6^{\prime}-\right.$ and $\left.7^{\prime}-\mathrm{H}\right), 7.12$ $\left(2 \mathrm{H}, \mathrm{s}, 1^{\prime}-\right.$ and $\left.3^{\prime}-\mathrm{H}\right), 8.02-8.24\left(2 \mathrm{H}, \mathrm{m}, 4^{\prime}-\right.$ and $\left.8^{\prime}-\mathrm{H}\right), 8.17(1 \mathrm{H}$, dd, $J 10.1$ and $0.9,=\mathrm{CH}-\mathrm{N}), 9.55(1 \mathrm{H}, \mathrm{s}, \mathrm{CHO})$ and $13.60-14.10$ $(1 \mathrm{H}, \mathrm{br}, \mathrm{NH}) ; v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3016,1649$ and $1608 ; m / z$ (rel. intensity) $247\left(\mathrm{M}^{+}, 48 \%\right.$) and 218 (100) (Found: M^{+}, 247.0991. $\mathrm{C}_{17} \mathrm{H}_{13} \mathrm{NO}$ requires $\mathrm{M}, 247.0998$).

Acknowledgements

This work was financially supported by a Grant-in-Aid for Fundamental Science Research from the Ministry of Education, Science and Culture and by a Special Research Project organized by Waseda University.

References

1 Part 29: M. Nitta, Y. Iino and K. Kamata, J. Chem. Soc., Perkin Trans. I, 1994, 2721.

2 A preliminary account of part of this paper has appeared: M. Nitta, S. Mori and Y. Iino, Tetrahedron Lett., 1991, 32, 6727.

3 D. Lewis and D. Peters, Facts and Theories of Aromaticity, Macmillan, London, 1975; L. T. Scott, M. A. Minton and A. Kirms, J. Am. Chem. Soc., 1980, 102, 6311.

4 For a review: T. Nishiwaki and N. Abe, Heterocycles, 1981, 15, 547.

5 T. Nozoe, S. Seto, S. Matsumura and T. Terasawa, Chem. Ind. (London), 1954, 1357.
6 O. Meth-Cohn, C. Moore and P. H. van Roogen, J. Chem. Soc., Perkin Trans. 1, 1985, 1793.
7 K. Hafner and M. Krender, Angew. Chem., 1961, 73, 657.
8 K. Hafner, Chimia, 1973, 27, 640; J. Heterocycl. Chem., 1976, 12 (Suppl. vol. 3), S-33.
9 L. L. Replogle, K. Katsumoto, T. C. Morrill and C. A. Minor, J. Org. Chem., 1968, 33, 823.

10 (a) K. Hafner, J. Haring and W. Jakel, Angew. Chem., Int. Ed. Engl., 1970, 9, 159; (b) U. Muller-Westerhoff and K. Hafner, Tetrahedron Lett., 1967, 4341.
11 K. Hafner, H. Klaus and M. C. Bohm, Tetrahedron Lett., 1980, 21, 41.
12 P. Molina, A. Arques, A. Alias and M. V. Vinander, Tetrahedron Lett., 1991, 32, 4401; P. Molina, M. Alajarin, A. Vidal, J. FeneauDupont and J. P. Declerq, J. Org. Chem., 1991, 56, 4008; T. Saito, H. Ohmori, E. Furuno and S. Motoki, J. Chem. Soc., Chem. Commun., 1992, 22; P. Molina, A. Alajarin, A. Vidal and P. J. S. Androda, J. Org. Chem., 1992, 57, 829; S. Eguchi, Y. Matsushima and K. Yamashita, Org. Prep. Proced. Int., 1992, 24, 209; T. Bohm, W. Kramer, R. Neidlein and H. Suschitzky, J. Chem. Soc., Perkin Trans. 1, 1993, 948, and references cited therein.
13 M. Nitta, Rev. Heteroatom Chem., 1993, 8, 87, and references cited therein.
14 Y. Iino, T. Kobayashi and M. Nitta, Heterocycles, 1986, 24, 2437.
15 M. Nitta and Y. Iino, J. Chem. Soc., Perkin Trans. 1, 1990, 435; N. Kanomata and M. Nitta, J. Chem. Soc., Perkin Trans. 1, 1990, 1119.

16 M. Nitta, M. Y. Iino and E. Hara and T. Kobayashi, J. Chem. Soc., Perkin Trans. 1, 1989, 51.
17 N. Kanomata, K. Kamae, Y. Iino and M. Nitta, J. Org. Chem., 1992, 57, 5313.
18 K. Hafner, K. H. Hafner, C. Konig, M. Kreuder, G. Ploss, G. Shulz, E. Strum and K. H. Vopel, Angew. Chem., Int. Ed. Engl., 1963, 2, 123.
19 Y. G. Gololobov, I. N. Zhumurova and L. F. Kasukin, Tetrahedron, 1981, 37, 437.
20 T. Kobayashi and M. Nitta, Chem. Lett., 1985, 1459.
21 Y. Iino, E. Hara and M. Nitta, Bull. Chem. Soc. Jpn., 1989, 62, 1913.

22 M. Nitta, Y. Iino and K. Kamata, Heterocycles, 1989, 29, 1655; M. Nitta, M. Ohnoma and Y. Iino, J. Chem. Soc., Perkin Trans. 1, 1991, 1115.
23 M. Nitta and Y. Iino, Bull. Sci. Eng. Res. Lab., Waseda Univ., 1994, 140, 24 (Chem. Abstr., 1994, 120, 84518).
24 R. Hoffmann, The Chemistry of Nonbenzenoid Aromatic Compounds, Butterworth, London, 1970, p. 188.
25 K. Hafner and G. F. Thiele, Tetrahedron Lett., 1985, 26, 2567.
26 Y. Iino and M. Nitta, Bull. Chem. Soc. Jpn., 1988, 61, 2235.
27 K. Hafner, H. E. A. Kramer, H. Musso, G. Ploss and G. Schulz, Chem. Ber., 1964, 97, 2066.
28 M. Nitta, Y. Iino, T. Sugiyama and A. Akaogi, Tetrahedron Lett., 1993, 34, 631.
29 Tse-Lok Ho, Hard and Soft Acids and Bases Principle in Organic Chemistry, Academic Press, New York, 1977.
30 I. Fleming, Frontier Orbitals and Organic Chemical Reactions, Wiley, New York, 1976.
31 MNDO method: M. J. S. Dewar and W. J. Thiel, J. Am. Chem. Soc., 1977, 90, 4899. MOPAC Ver. 5.00 (QCPE No. 445), J. J. P. Stewart, QCPE Bull., 1989, 9, 10; T. Hirano, JCPE Newslett., 1989, 1, 36; Revised as Ver. 5.01 by J. Toyoda, for Apple Macintosh, revised as Ver. 6.01 by T. Hirano, for HITAC and Unix Machines, JCPE Newslett., 1989, 1, 10; revised as Ver. 6.02 by T. Eguchi, for MSDOS version (NDP-Fortran).
32 M. Nitta and S. Mori, unpublished results.

[^0]: \dagger Iminophosphorane 10B reacts with 2-chlorotropone to give the 1azaazulene derivative (ref. 32).

[^1]: ${ }^{a}$ Numbering scheme is that for fulvene, and is shown in Scheme 5.

